网站导航|设为首页|加入收藏
您当前的位置:首页 > 外国小说 > 中篇小说

认识与谬误

时间:2013-10-31 09:58:10  来源:  作者:恩斯特.马赫  
简介:恩斯特·马赫(Ernst Mach,1838-1916)奥地利科学家和哲学家。作为物理学家,他关于冲击波的实验研究使他闻名于世,“马赫数”等术语就是以他的名字命名的;尤其是,他对经典力学的敏锐洞察和中肯批判,是物理学革命行将到来的先声也使他成为相对论的先驱。在生理学和心理学领域,他的研究是围绕感觉的分析进行的。其具体贡献有:关于运动引起的音调和颜色的变化,即多普勒效应;肉耳迷路的功能和运动感觉;视网膜各点的相互依赖及其对亮度知觉的影响;关于空间和时间的心理学研究;探究心理学分析;格式塔心理学、精神分析和发...
  关于绕几个点的相继转动是否与绕一点转动等价,纯粹的位移是否完全可能的疑问——当用不同于零的曲率的曲面代替欧几里得平面时,这一点受到辩护——在正在考虑的期间从来也不会在纯朴和快乐地发现这些关系的心智中出现。欧几里得在他的全等原理中刻意回避和隐蔽引入的刚体运动的研究,到今天还是最适合几何学基础教育的工具。借助发现观念的方法能最佳地使它为初学者拥有。
  第十三节
  当几何学变成职业的和学者的沉思的科目时,事物的这种健全的和朴素的概念消失了,几何学的处理经历了本质的修正。该科目现在必须为个别的概观起见综合这个部门的知识,必须把能够直接辨认的东西与可以演绎和已被演绎的东西分开,必须明确减少演绎的头绪。为了教育的目的,人们把最简单的原理、最容易获得和明显地摆脱了怀疑和矛盾的东西放在开头,使下余的东西基于它们之上。人们竭尽全力简化这些初始原理,在欧几里得的体系中可以观察到这一点。通过这种用别的概念支持每一个概念,把尽可能小的范围留给直接的知识的努力,几何学逐渐离开了它从中起源的经验的土地。人们习惯于使自己认为推导的真理比直接知觉的真理更高级,并最终开始要求从来也没有人怀疑的命题的证明。就这样,具有其逻辑完美和优雅的欧几里得体系出现了——为了制止诡辩派的猛攻,以致按惯例也会这样进行的。可是,这种把一连串的命题放在任意选取的演绎思路之上的人为方法不仅隐藏了研究的道路,而且也完全丧失了对几何学原理之间各种有机关联的洞察。与富有成果的、多产的研究者相比较,这个体系更适合于生产心智狭窄的和缺乏独创性的学究。当偏好对他人的智力成果作奴性评论的经院哲学在思想者中几乎不培育对于他们的基本假定的合理性的任何敏感性,并且通过补偿的方式在他们中间鼓励对于逻辑演绎形式的夸大的尊重时,这些条件并未得到改善。从欧几里得到高斯的整个时期,都或多或少地遭受了来自这种心智的影响。
  第十四节
  在欧几里得把他的体系建立于其上的命题中,可以找到所谓的第五公设(也称为第七公理,有人称为第十二公理):“如果一条直线与两条直线相交,以致在它的同一侧的两个内角合在一起小于两直角,那么这些直线在被连续延长时,最终将在其角是小于两直角的那侧处相交。”欧几里得容易证明,如果一条直线落在另外两条直线上时,它使错角彼此相等,那么这两条直线将不相交,而是平行的。但是,对于逆即平行使落在它们之上的每一直线的错角相等的证明,他却不得不诉诸第五公设。这个逆等价于这样的命题:通过一点只能画一条线与直线平行。进而,由于借助这个逆能够证明三角形的角之和等于两直角,以及从这个定理再次得出第一个定理的事实,赋予欧几里得几何学第五公设以独特的和基本的意义的、所讨论的命题之间的关系变得清楚明白了。
  第十五节
  缓慢会聚的线的相交处在作图和观察的范围之外。因此,可以理解,鉴于包含在第五公设中的断言的巨大重要性,欧几里得的后继者由于他习惯于严格性,竟然甚至在古代就绷紧每一根神经证明这个公设,或者用某个直接明显的命题代替它。为了把这个第五公设从欧几里得的其他假定中演绎出来,从欧几里得到高斯时代人们就作出了无数无效的努力。出于十足渴望科学的阐释,在追求潜藏的真理源泉中花费了诸多世纪的辛劳,正是这些人奉献的令人钦佩的场景,可是从来没有一个理论家或实践者实际上怀疑过这一切!我们以热切的好奇心追踪寓居于人类对知识这种追求中的道德力量的固执表达,我们满意地注意到,探究者的失败如何逐渐地导致他们察觉几何学的真实基础是经验。我们将使我们自己满足于几个例子。
  第十六节
  在其对平行理论的贡献方面著名的探究者当中,有意大利人萨凯里(Saccheri)和德国数学家兰伯特(Lambert)。为了使他们的进攻模式变得可以理解,我们将首先谈到,我们相信我们经常观察的矩形和正方形的存在,在不借助第五公设的情况下无法证明,例如,让我们考虑两个在A和D具有直角的全等的等腰三角形ABC,DBC(图24),  并设它们在它们的斜边BC处在一起,以致形成等边的四边形ABCD,欧几里得的头27个命题不足以决定在B和C处的两个相等的(直)角的特点和大小。因为长度的度量和角度的度量根本不同且不可直接比较;因此,关于边和角的相关的头一批命题仅仅是定性的,关于像角之和这样的角的定量定理的绝对必要性从而也是如此。进而要谈到的是,类似于欧几里的27个平面几何命题的定理也可以针对球面和具有恒定负曲率的曲面建立,在这些案例中类似的作图分别在B和C处给出钝角和锐角。
  第十七节
  萨凯里的主要成就是他陈述这个问题的形式。如果第五公设包含在余下的欧几里得假定中,那么就可能在没有它帮助的情况下证明,在 A和B处具有直角且AC=BD的四边形ABCD(图25)中,在C和D处的角同样也是直角。另一方面,在这个项目中,C和D或是钝角或是锐角的假定将导致矛盾。换句话说,萨凯里力图从直角、钝角或锐角的假设引出结论。他表明,如果证明这些假设的每一个在一个案例中成立,那么它将在所有案例中都成立。为了证明锐角、直角或钝角的假设的普适有效性,仅仅必须拥有一个其角 2R的三角形。值得注意的是这一事实:萨凯里也谈到支持直角假设的生理-几何学实验。如果线段CD(图25)与垂直于直线AB的相等的垂线的两个端点连结,从第一条线的任何一点N出发在AB上终止的垂线即NM等于CA=DB,那么直角的假设被证明是正确的。萨凯里如实地不认为,与另一个直线等距的线本身是直线并非自明。只要想一想平行于球上的大圆的圆就可以了,该圆没有描绘球上的最短线,不能使它的两面全等。
  直角假设正确性的另一个实验证明如下。如果表明半圆中的角(图 26)是直角,即 α + β = R,那么2 α + 2 β = 2R是三角形ABC的角之和。如果使半径在半圆上三次对向(subtend),且连结第一个和第四个端点的线通过圆心,那么我们将在C处有(图27)3 α = 2R,从而三个三角形的每一个将有角之和2R。不同大小的等角三角形(相似三角形)的存在同样有待于实验证明。就图28而言,若在B和C处的角给出 β + δ + γ + ε = 4R,则四边形BCB’C’的角之和也是4R。甚至沃利斯(1663)把他对第五公设的证明建立在相似三角形存在的假定上,近代几何学家德尔布吕夫(Delboeuf)从相似假定演绎出整个欧几里得几何学。
  • 上一部:《巴别塔之犬》
  • 下一部:《作为意志和表象的世界》
  • 来顶一下
    返回首页
    返回首页
    按长短分类
    专题阅读
    国外小说网站
      Error:Change to use e:indexloop
    栏目更新
    栏目热门
    【本站所发布的资源来源于互联网,内容观点不代表本站立场;为保障原创者的合法权益,部分资源请勿转载或商业利用,谢谢配合!】
    网站xml地图
    站长信箱:smf101@163.com
    Powered by www.tclxh.com
    苏ICP备15052759号