第三十节
几何学的度量相互依赖的知识是用形形色色的方法达到的。在用面开始度量面之后,某种另外的进步几乎是不可避免的。在一个容许分为相等的部分的平行四边形域中,以致每一个包含m个域的n排部分域并排相互放置,计数这些域是不必要的。通过把测量边的数目在一起相乘,便发觉域的面积等于mn这样的域,而且很容易发现用画对角线形成的两个三角形中的每一个面积等于mn/2这样的域。这是算术对于几何学的第一次和最简单的应用。同时发生的是,面积的度量依赖于其他度量即线和角的度量,也被发现了。人们发觉,矩形的面积比具有相同长度的边的斜平行四边形的面积大;因而,面积不仅取决于边长,而且也取决于角度。另一方面,正如容易看到的,由平行于底的木条构成的矩形,通过位移能够转变为具有相同高和底的任何平行四边形而不改变它的面积。正像每一个木工知道的,具有它们的给定的边的四边形在它们的角方面还未被决定。他添上对角线,使他的四边形变成三角形,而三角形在边给定时是刚性的,也就是说,就它们的角而言也是不可变的。由于察觉到度量相互依赖,从而引入真实的几何学问题。施泰讷(steiner)贴切而公正地把他的主要著作冠以《几何学图形相互依赖的系统发展》的书名。在施内尔(Snell)有独创性的、未受赏识的论基础几何学的专题著作中,上述问题甚至对初学者来说也变得显而易见。
第三十一节
用金属线构造一个平面的物理的三角形。如果其边之一绕一个顶点转动,以便使在那点的内角增加,那么将看到运动的边改变它的位置,对边随角一起变大。金属线除了现在之前的那些以外,将需要新的片断完成最后提到的边。这个实验以及其他相似的实验能够在思想中重复,但是心理实验从来只不过是物理实验的摹本。如果物理实验先前没有导致我们关于在空间上不可改变的物理物体的知识——度量的概念,那么心理实验恐怕是不可能的。根据这种特点的实验,有助于我们达到这样一个真理:在三角形内可发现的六个度规量(三个边和三个角)中,至少包括一个边在内的三个度规量足以决定三角形。如果在决定三角形的组分中只给予一个边,那么所考虑的角或者必须是给定的边包含的角,或者是与较大的边相对的角——至少若决定不得不是唯一的话。在达到三角形由三边决定和它的形式独立于它的位置的洞察后,可以得出结论说,在等边三角形中所有三个角和在等腰三角形中与等边相对的两个角必定是相等的,不管角和边无论以什么方式相互依赖。这在逻辑上是确定的。但是,由于那个理由,它所依据的经验基础丝毫也不比它在类似的物理学案例中那样多余。
第三十二节
边和角相互依赖的模式首先在特殊的例子中被自然地辨认出来。在计算矩形和由它们的对角线形成的三角形的面积时,必定会注意到这样的事实:具有3和4个长度单位的边的三角形给出具有3,4,5个长度单位的边的直角三角形。因此,成直角性表明与边之间的确定的、合理的比率相关。关于这个趔的知识借助三个分别为3,4和5个长度单位的相关联的绳索立桩标出直角。等式3[2]+4[2]=5[2]现在引起注意,已证明它的类似物对于具有长度a,b,c的边的所有直角三角形都是有效的(一般公式是a2+b2=c2)。众所周知,这一关系多么深刻地进入度规几何学中,距离的所有间接测量如何可以追溯到它。我们将努力揭开这个关系的基础。
第三十三节
首先必须评论一下,对于所谓的毕达哥拉斯定理,无论希腊的几何学演绎还是印度的算术演绎,都无法避免考虑面积。所有演绎依据的、在整个演绎中以不同形式本能地出现的一个本质之点如下:如果使三角形a,b,c(图17) 在它自己的平面上滑动一个短距离,那么可以设想,它留在后面的空间被它占有的新空间弥补或补偿。这就是说,边中的两个在位移时扫过的面积等于第三边扫过的面积。这个概念的基础是三角形面积守恒的假定。如果我们把面看作是十分微小的、但不改变第三维厚度(为此这在目前的关联中不产生影响)的物体,那么我们将再次具有作为我们根本假定的物体体积的守恒。相同的概念可以应用到四面体的平移,但是它在这个例子中不导致新的观点。体积守恒是刚体和流体通常具有的性质,被旧物理学理想化为不可入性。在刚体的情况下,我们具有所有部分之间的距离保持不变的附加属性,而在流体的情况下,刚体的性质仅就最小的时间和空间元才存在。
第三十四节
如果使具有边a,b,c的斜三角形在边b的方向上位移,那么根据上面叙述的原理,仅仅b和c将描绘出等价的平行四边形,这些平行四边形在相同的平行线上的相等的一对平行边方面是相同的。如果a与b成直角,且把三角形与〔成直角地移动距离c,那么边c将描绘出正方形c2,而另外两个边将描绘出平行四边形,其组合面积等于正方形面积。通过刚才在先的观察,两个平行四边形分别等价于a 2 和b 2 ——以此便达到了毕达哥拉斯定理。相同的结果也可以通过下述程序得到(图18):
首先使三角形与a成直角地滑动距离a,然后与b成直角地滑动距离b,在这里a 2 +b 2 将等于c扫过的面之和,该和显然是c 2 。取一个斜三角形,与刚才完全相同的程序容易且明显地给出比较普遍的命题c 2 =a 2 +b 2 -2abcos γ 。
第三十五节
因此,三角形第三边对于另外两边的依赖由被围住的三角形的面积决定;或者,用我们的概念来讲,由包含容量的条件决定。也能直接地看出,上述的等式表达了面积的关系。确实,也可以把两个边之间所夹之角看作是对第三边起决定作用,在这个案例中等式将明显地呈现截然不同的形式。让我们略微仔细地考察一下这些不同的度量。如果两条长度为a和b的直线之端在一点相交,那么把它们的自由瑞连结起来的线〔的长度将包括在一定的限度之间。我们将有c≤a+b和c≥a-b。仅仅形象化不能告知我们这个事实;我们只能从思想中的实验——基于有形实验并再现它的一种程序——获悉它。例如,这一点将通过抓牢a并转动b,首先直到它形成a的延长部分为止,其次直到它与a重合为止。直线原本是由心理性质刻画特征的唯一具体的图像——我们能够从具有确定特点的物体中得到这一图像,它以具有无限小但却恒定的厚度的绳子或金属线的形式把容量的最小值插入它的端点的位置之间——只能够以一种唯一决定的方式完成它。如果几条直线通过一点,那么我们用它们的方向从心理学的角度在它们之间进行区分。但是,在通过关于物理对象的度规经验得到的抽象空间中,不存在方向的差异。通过一点的直线在抽象空间中只能借助在它之上指定第二个物理点来完全决定。定义在方向上恒定的直线,或者把角定义为方向之间的差异,或者把平行直线定义为具有相同方向的直线,就是在心理学上定义这些概念。
75/94 首页 上一页 73 74 75 76 77 78 下一页 尾页
|