第六节
一个简单的例子将阐明综合方法:作一个圆,它与两条相交的共面线G,G’切触,它们中的一个处在点P(图3)。因为对称,与这样两条线切触的圆的中心必然位于等分线S,S’的一个或另一个之上。由于P是切触点之一,中心必须位于与G在P正交的线L之上,这决定了独有的两个中心m,m’,即L与S,S’的交点。各自的半径是mP,m ’P。该例子表明,解必须服从的各种条件是如何被分离的,以便从每一个条件引出解需要的结构。而且,我们看到,科学的程序不同于纯粹的试错法,试错法至少可以近似地解决问题,我们在其中以计划好的方式前进,从而仔细地利用已经了解的或一劳永逸确立的东西。我们仅仅留意已经满足分离的条件的圆族。最后,我们注意到,科学的程序与日常的解难题本质上不同,除非在后一个案例中该领域通常较广阔、较少充分了解或预先探索,以致计划的搜寻更困难。任何几何学作图问题能够容易地以难题的外衣呈现出来,对于甚至以诗句讲出他们的问题的印度数学家来说,充分地了解这一点。
第七节
设我们在对使用的定理没有先验知识的情况下,不得不解决这同一问题。按照被来自牛顿的某些暗示扩大的古人的实践,我们于是用分析方法着手,认为该问题已被解决,从画具有两条切线 G,G’的任意圆开始,并把与G的切点标记为P。通过审查中心m和半径mP与切线和切点的关联,我们被导至给予我们从G,G’到m和mP的相反程序以及如此作图的定理。
为了阐明分析方法的价值,考虑一下多少较为困难的例子:作一个与线G,G’触切的圆,并通过任意一点P(图4)。设与G触切的该圆被给定,它的中心C因而在平分线S上,线CP必定等于在上面垂直于G的垂线CH,这等于半径r。如果我们由此能够找到C,H或r,那么问题将被解决。通过使CH运动通过P,我们看到,存在两个解。让我们把条件表达为方程利用G作为横坐标轴,使tan SOG=a,用x和y=ax表示C的坐标,用m和n表示P的坐标。于是,
a 2 x 2 =(x-m) 2 +(ax-n) 2 或者
x=(m+an)±{[(m+an) 2 -(m 2 +n 2 )]} 1/2 ]这给出了X=OH的作图。在不计算和不利用古代的绘图法的情况下,我们能够这样找到解:考虑与P关于S为对称的点p’,画线P’PQ(图5),然后按照定理=QP·QP’作切点H。第二个解可通过取QH’=QH得到。不过,最简单的和最雅致的解从下述简单的观察可以推出:存在无限多的作图,这些作图关于O与所要求的作图处于相似的位置。因此,如果我们画线OP(图6)和其中心在S上且与G,G’触切的任意圆K,那么它与OP的交点可以被视为与P同系的点。通过P与两个半径的平行线从而导致所要求的中心C,C’。
第八节
导致柏拉图发现分析方法的,必定是有独创性的理智独具的幸运的心理本能。人们只了解人们以前通过感官或在思想中偶然经验过的东西。在人们没有经验的领域,人们不能解决问题。为了把未知的东西减少到最小,没有比下述方法更好的方法了:想像在已经熟悉的案例中结合起来的已找到的和已知的东西,然后在建构时再追溯现在更容易看见的、从后者到前者的路线。它不仅仅对几何学有效。如果你想把树干横放在溪流上以便走过去,那么你想像已解决的问题:由于考虑到必须把树干拖到特定的地方,但是首先必须把树砍倒等等,你踩出从已找到的东西到给定的东西的路线,在实际的建桥中他不得不在相反的方向横越该路线,从而颠倒操作顺序。这是一个十分普通的实际思维的案例。最伟大的工程发明就其不是逐渐地由机遇提供,而是迅速地由自发的努力形成而言,它们似乎依赖于这个过程。富尔顿(Fulton)想像快速运动的船,该船带有连续转动的明轮推进器(通过与地上的车辆类比),而不是有节奏的作用的浆,还带有驱动明轮的蒸汽机等等。人们同样能够证明,最伟大的和最重要的科学发现把它们的起源归因于分析方法,尽管我们不能完全排除综合程序的参与。探究者和发明者的理智活动本身再次表明,它与普通人的理智活动并无本质上的不同。探究者把普通人通过本能解答的东西提升为方法。不过,这种方法已经在最古老的和最简单的精密自然科学即几何学中变成有意识的。
第九节
在进入自然科学中探究的类比方法的例子之前,让我们进一步考察一下几何学。头一批几何学洞察,甚至比较复杂的洞察,肯定不是通过演绎得到的,演泽属于科学的比较发达的水平,以牢靠的知识本体或对简化、程序和体系的要求为先决条件。确切地讲,这样的洞察像在自然科学中一样,是通过精密观察的实际需要,借助测量、计算、权衡和评估得到的;是通过直觉、只是后来才通过从先验知识的演绎,在比较、归纳、相似和类似的指导原则下,借助思索或思想实验得到的。在这里,相对较迟的古代探究者阿基米德的著作是十分富有教益的。他告诉我们,他和其他人在他们发现精密的形式和证明之前,就了解各种定理。例如,求抛物线的面积可以借助用切割和称量的薄片覆盖图样近似地获得。从该结果,阿基米德猜中精确的定律,后来成功地证明了它。即使在近代,这样的问题首先在经验上发现,通过近似解决,后来才精确地加以处理。在1615年,梅森(Mersenne)把数学家的注意力引向生成旋轮线的方法。伽利略只能用称量表明,该曲线的面积近似地是生成圆的面积的三倍,1634年罗贝瓦尔(Robeval)证明,这严格地如此。
第十节
如果我们形成关于某一命题C的存在的猜测,我们能够力图通过迅速的综合从已知的命题推导它,但是这需要相当牢固的有关基础的信息。要不然,我们可以尝试反过来分析地行进到C的邻近条件B,接着行进到B的邻近条件A。若A是已知的或自明的,则我们发现推论“A承担B,B承担C”。若非C来自B,B来自A,A原来是不可能的,则C再次被证明。这个最后的结果是无条件的。另一方面,如果分析被理解成为了直接证明的缘故,那么我们必须保证,命题“C以B为条件”、“B以A为条件”等等都是可改变的,因为只有此时才能够把颠倒的顺序看作是C的恰当证明。并非所有命题都是可改变的:M制约N无法从N制约M得出。举例:在正方形中(M),对角线是相等的(N)。反题:两个相等的对角线N确定正方形(M),这显然为假。为了得到反题,或者我们将不得不扩大概念M,用M’代替它,M’把迄今还没有发明出名称的许多具有相等对角线的四边形统统包括在内,或者我们可以把N的范围限制为某个N’。这样最后的步骤会导致可以改变的命题:在正方形中(M),两个相等且相互垂直的对角线在它们的中点相交(N’)。全等的图形是相似的,但是相似的图形必须在面积是全等的情况下才相等。三角形中的两个相等的边与相等的角相对,反之亦然。这些例子将足以表明,在应用理论分析或盖然性分析时需要谨慎小心。
53/94 首页 上一页 51 52 53 54 55 56 下一页 尾页
|