网站导航|设为首页|加入收藏
您当前的位置:首页 > 外国小说 > 长篇小说

上帝与新物理学

时间:2014-02-24 22:44:08  来源:  作者:保罗·戴维斯  [ 下载本书 ]
简介:上帝是什么、存在吗?宇宙何以存在?世界的本质是什么?,,,,诸如此类的问题在本书中将进行深入细致的讨论。《上帝与新物理学》不是谈宗教的书。《上帝与新物理学》谈的是新物理学——从牛顿经典力学到相对论再到量子力学再到大统一理论——对以前的属于宗教的问题产生的影响。《上帝与新物理学》也不是一纯科学的书。《上帝与新物理学》从哲学的角度发问,是关于科学及其广泛含义的书。...
  20世纪30年代,物理学家们在量子论的框架中研究核作用力,终于明白了这种力的性质是与粒子的结构分不开的。在日常生活中,我们把物质和力看成是两个独立的概念。力可以通过引力或电磁效应作用于两个物体之间,或直接通过接触作用于物体。但物质只是被看作是力的来源,而不是力的传播媒介。因此,太阳引力跨越一无所有的空间作用于地球,用场的语言来描述就是:太阳的引力场(若是没有引力表现出来,引力场是看不见也摸不着的)与地球相互作用,对地球施加了一种力。
  在亚核的领域里,量子效应起着重要的作用,因而就需要另一套描述及语言。量子论的一个中心论点是,能量是以不连续的量的方式传导的。这也是量子论的由来。因此,光子就是电磁场的量子。当两个带电粒子互相靠近时,就受到了它们都有的电磁场的影响,电磁力就在它们中间起作用。电磁场使它们的运动轨迹发生偏转。但一个粒子通过场对另一个粒子所施加的扰动必须以光子的形式传导。因而,带电粒子之间的相互作用不是一个连续的过程,而应被看作是由一个或多个光子转移造成的脉冲。
  在这里,使用理查德·费恩曼所发明的图解有助于说明问题。图23上有一个光子往来于两个电子之间,因而这两个电子便分离开来。有人把这种相互作用的机制比作两个打网球的人,这两个人的行为通过球的往来而有了联系。因此,光子的行为颇象是信使,在两个带电粒子之间来回跳荡,告诉这个带电粒子那里还有一个带电粒子,从而引起一种反应。物理学家们借助于这样的概念,就可以计算出原子层面上的很多电磁过程的效应。在所有的场合中,实验的结果与利用计算得来的预测惊人地相符。
  电磁场的量子论应用起来如此成功,于是20世纪30年代的物理学家们很自然地又把它应用于核力场。日本物理学家汤川秀树应用量子论,发现质子和中子之间的力实际上可以用二者之间信使般往来的量子为模型,但这里的量子与我们所熟悉的光子大不相同。汤川的量子必须有质量,才能再现出核力的那种作用距离极短的效果。
  这里有一个微妙而又重要的问题。一个粒子的质量,就是其惯性的大小,也就是保持其运动状态不变的力的大小。施加一个同样的力,一个轻粒子要比一个重粒子容易推动。假如一个粒子变得极轻,那它就会被任何杂散的力加速,于是就会以非常大的速度运动。在那极端的场合下,粒子的质量降低为零,粒子就会以最快的速度运行,这速度就是光速。光子就是这种情况,因为可以认为光子是没有质量的粒子。而汤川的粒子则有质量,其运行速度比光慢。汤川把它们称作介子,但现在人们把它们叫作π介子。
  π介子在原子核里,往来于中子和质子之间,用核力使中子、质子粘结在一起。通常,π介子是看不见的,因为它们一产生,就接着被另一个核粒子吸收了。然而,假如向原子核系统中输入能量,π介子就能从原子核中飞出来,使人能够单独地对它进行研究。两个质子高速相撞时(这个过程在第三章曾简略地讲过)π介子就会飞出来。第二次世界大战结束不久,π介子就这么被发现了。π介子的发现,出色地验证了汤川的理论,并被誉为理论物理学、尤其是量子场论的胜利。π分子的另一个与众不同的特色是极不稳定,在产生之后几乎立刻衰变成为较轻的粒子。其衰变而成的粒子之一是μ子,这种粒子在各方面都与电子相同,只是质量与电子不同。μ子要比电子重许多,而且也很快就衰变。
  物理学家们一旦意识到,通过亚原子粒子的高速碰撞可以造出全新的物质裂片,他们就开始建造巨大的加速器来制造物质的裂变。这些加速器可以把任何一种亚原子粒子加速到接近光速,而接近光速的冲击为人们揭示了亚核行为的整个新世界。这些加速器一旦投入使用,便出现了几十个迄今为止人们未曾想到的新粒子。这些新粒子蜂拥而至,使物理学家很快连名称都来不及给它们取了。一时间,各种各样的粒子乱哄哄地象个乱了套的动物园。后来,物理学家们渐渐地不那么晕头转向了,于是便在亚原子碎片中看出了某种秩序。图样开始出现了。
  自20世纪30年代以来人们便知道,核力不是一种,而是两种。强力将核粒子粘在一起,但还有一种弱得多的力。弱力使某些不稳定的核粒子衰变,例如,π介子和μ子就是由于弱力而衰变的,有些粒子既能感受到强力,又能感受到弱力,但有些粒子则感受不到强力。这种感受不到强力的粒子一般都比较轻,包括μ子、电子和中微子。至少存在着两种中微子,它们都是让科学最捉摸不透的东西。它们与其他物质的相互作用是如此之弱,以致可以轻而易举地穿透好几光年厚的固体铅!
  这些相互作用弱的较轻粒子都被称作轻子。带电荷的轻子如电子,既能感受到弱力也能感受到电磁力。但不带电荷的中微子则不受电磁力的影响。相互作用强的较重粒子被称作强子。强子分两种:一种是质子和中子,以及许多衰变为质子和中子的较重粒子,这一种强子被称作重子;其余的强子是介子,包括π介子。
  在这些大致的粒子分类中,还可以发现很多亚类。组成这些亚类的粒子具有若干性质,如质量,电荷,以及其他一些更为技术性的特性,其性质随其种类的不同而呈现出有系统的变化。在20世纪60年代,理论物理学家们发现,这些成系统的性质可以用一个数学的分枝——群论——来给以非常漂亮的表达。其中的原理是对称的概念;或许可以这么说,物理学界一旦最终意识到了亚原子粒子的对称性,于是便勇往直前了。
  人们一直就知道,对称在组织自然世界的过程中扮演了一个很重要的角色。我们都熟悉太阳的圆形,雪花和结晶体的规则性。然而,并非所有的对称都是几何性的。男女的对称、正负电荷的对称也是很有用的概念,但这种对称是抽象性质的。在重子和介子当中也发现了这种抽象的对称,这表明任何特定的一类粒子都被一个简单的数学图表紧密地联系起来。可以用我们所熟悉的几何对称来对此做点些许说明。我们都知道,从镜子里看,我们的左手是在右边。左手和右手构成了一个由两个组元组成的对称系统,而镜中的左右手映像又使我们看到了原来的手的样子。从某种意义上说,质子和中子也可以被看成类似左手和右手。在“映像”中,中子变成了质子,质子变成了中子。当然,这里所说的映像不是通常意义上的在实在的空间里的映像,而是在想象的空间里的一种抽象的映像。这想象的空间用行话说就是同位旋空间。尽管这对称是抽象的,然而,其数学表达却与几何对称是一样的,而且这表达具有足够的真实。在散射实验中的质子和中子的性质,以及质子和中子吸引其他粒子注意的方式,就显示出这种表达是真实的。
  • 上一部:《了不起的盖茨比》
  • 下一部:《无人生还》
  • 来顶一下
    返回首页
    返回首页
    按长短分类
    专题阅读
    国外小说网站
      Error:Change to use e:indexloop
    栏目更新
    栏目热门
    【本站所发布的资源来源于互联网,内容观点不代表本站立场;为保障原创者的合法权益,部分资源请勿转载或商业利用,谢谢配合!】
    网站xml地图
    站长信箱:smf101@163.com
    Powered by www.tclxh.com
    苏ICP备15052759号